term rewriting system - определение. Что такое term rewriting system
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое term rewriting system - определение

REPLACING SUBTERM IN A FORMULA WITH ANOTHER TERM
Term rewriting; Term rewriting system; Term-rewriting; Rewrite system; Rewrite rule; Phase-structure rule; Rewriting system; Term Rewriting System; Reducible expression; Redex; Rewrite rules; Transformational rule; Rewriting logic; Term rewrite system; Reduction system; Substitution system; Reduction systems; Termination (term rewriting); Termination (rewriting); Trace rewriting system; Tree rewriting; Rewriter
  • '''Pic.2:''' Rule lhs term <math>x*(y*z)</math> matching in term <math>\frac{a*((a+1)*(a+2))}{1*(2*3)}</math>
  • '''Pic.1:''' Schematic triangle diagram of application of a rewrite rule <math>l \longrightarrow r</math> at position <math>p</math> in a term, with matching substitution <math>\sigma</math>

term rewriting system         
(TRS) A collection of rewrite rules used to transform terms (expressions, strings in some formal language) into equivalent terms. See reduction. (1994-11-04)
Rewriting         
In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines,
redex         
Reducible Expression. An expression matching the left hand side of a reduction rule or definition.

Википедия

Rewriting

In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects.

Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable. Rewriting systems then do not provide an algorithm for changing one term to another, but a set of possible rule applications. When combined with an appropriate algorithm, however, rewrite systems can be viewed as computer programs, and several theorem provers and declarative programming languages are based on term rewriting.